Math, 100 ideas in 100 words A whistle-stop tour of key concepts

Sam Hartburn

Book - 2024

One of the first titles in a cutting-edge new series created in partnership with The Science Museum, this book introduces 100 key areas of math such as geometry, algebra, probability and pure math, and explains each topic in just 100 words. Perfect for getting your head around big ideas clearly and quickly, or refreshing your memory of the fundamentals of math, this book covers the most up-to-date terms and theories and inspires a heightened level of understanding and enjoyment to the core areas of math.

Saved in:

2nd Floor New Shelf Show me where

510/Hartburn
0 / 1 copies available
Location Call Number   Status
2nd Floor New Shelf 510/Hartburn (NEW SHELF) Due Jan 28, 2025
Subjects
Genres
Instructional and educational works
Published
New York, NY : DK Publishing 2024.
Language
English
Main Author
Sam Hartburn (author)
Other Authors
Ben Sparks (author), Katie Steckles
Edition
First American edition
Item Description
Includes index.
Physical Description
191 pages : illustrations (some color) ; 21 cm
ISBN
9780744081619
  • Introduction
  • Number
  • 1. Integers and counting
  • 2. Rational and real numbers
  • 3. The real number line
  • 4. Zero
  • 5. Basic operations
  • 6. Prime numbers
  • 7. The twin prime conjecture
  • 8. Goldbach's conjecture
  • 9. Square root of 2
  • 10. Logarithms and e
  • 11. Pi (π)
  • 12. The golden ratio
  • 13. Integer sequences
  • 14. Infinity
  • 15. Limits
  • 16. Number bases
  • 17. Fermat's last theorem
  • 18. Modular arithmetic
  • 19. Imaginary numbers
  • 20. The complex plane
  • 21. Quaternions
  • 22. Approximation
  • 23. Percentages
  • 24. Combinatorics
  • 25. Units of measurement
  • Algebra
  • 26. Algebra
  • 27. Equations and inequalities
  • 28. Polynomials
  • 29. Taylor series
  • 30. Simultaneous equations
  • 31. Functions
  • 32. The Riemann hypothesis
  • 33. Calculus
  • 34. Differentiation
  • 35. Integration
  • 36. Differential equations
  • 37. Matrices
  • 38. Permutations
  • 39. Coordinate systems
  • 40. Euler's formula and identity
  • 41. Fourier series
  • 42. Group theory
  • 43. The identity element
  • Geometry
  • 44. Polygons
  • 45. Polyhedra
  • 46. Tilings and tessellations
  • 47. Duality
  • 48. Symmetry
  • 49. Topology
  • 50. Möbius bands and Klein bottles
  • 51. Trigonometry
  • 52. Radians
  • 53. Pythagoras' theorem
  • 54. Euclid's Elements
  • 55. Construction
  • 56. Conic sections
  • 57. Circle
  • 58. Hyperbolics
  • 59. Distance metrics
  • 60. Gaussian curvature
  • 61. Vectors
  • Applied Maths
  • 62. Modelling
  • 63. Mechanics
  • 64. Monte Carlo simulation
  • 65. Discrete maths
  • 66. Cryptography
  • 67. Algorithms
  • 68. Complexity and sorting
  • 69. P vs NP
  • 70. Graph theory
  • 71. Four colour theorem
  • 72. Traversability
  • 73. Linear Programming
  • 74. Dynamical systems
  • 75. The logistic map
  • 76. Chaos
  • 77. Fractals
  • Probability and Statistics
  • 78. Probability
  • 79. Statistics
  • 80. Statistical diagrams
  • 81. Bayes' theorem
  • 82. Sampling
  • 83. Correlation
  • 84. Normal distribution
  • 85. Binomial distribution
  • 86. Markov chains
  • 87. Significance
  • 88. Game theory
  • 89. Combinatorial games
  • 90. Zero-player games
  • Logic and Proof
  • 91. Proof
  • 92. Boolean logic
  • 93. Propositional logic
  • 94. Venn diagrams
  • 95. Logical paradoxes
  • 96. Category theory
  • 97. Set theory
  • 98. Axioms
  • 99. Gödel's incompleteness theorem
  • 100. Millennium Prize Problems
  • Glossary
  • Index
  • About the authors