Something deeply hidden Quantum worlds and the emergence of spacetime

Sean Carroll, 1966-

Book - 2019

"Caltech physicist and New York Times bestselling author Sean Carroll shows that there are multiple copies of you. And everyone else. Really. Something Deeply Hidden begins with the news that physics is in a crisis. Quantum mechanics underlies all of modern physics but major gaps in the theory have been ignored since 1927. Science popularizers keep telling us how weird it is, how contradictory, how impossible it is to understand. Academics discourage students from working on the "dead end" of quantum foundations. Putting his professional reputation on the line, Carroll says that crisis can now come to an end. We just have to accept that there is more than one of us in the universe. There are many, many Sean Carrolls. Many of ...every one of us The Many Worlds Theory of quantum behavior says that every time there is a quantum event, a world splits off with everything in it the same, except in that other world the quantum event didn't happen. As you read this, you are splitting into multiple copies of yourself thousands of times per second. Step-by-step in Carroll's uniquely lucid way, he sets out the major objections to this utterly mind-blowing notion until his case is inescapably established. The holy grail of modern physics is reconciling quantum mechanics with Einstein's general relativity -- his theory of curved spacetime. Carroll argues that our refusal to face up to the mysteries of quantum mechanics has blinded us, and that spacetime and gravity naturally emerge from a deeper reality called the wave function. No book for a popular audience has attempted to make this radical argument. We're on the threshold of a new way of understanding the cosmos." --

Saved in:

2nd Floor Show me where

530.12/Carroll
1 / 1 copies available
Location Call Number   Status
2nd Floor 530.12/Carroll Checked In
Subjects
Published
[Boston, Massachusetts] : Dutton [2019]
Language
English
Main Author
Sean Carroll, 1966- (author)
Physical Description
xii, 347 pages : illustrations ; 24 cm
Bibliography
Includes bibliographical references (pages [329]-335) and index.
ISBN
9781524743017
  • Prologue: Don't Be Afraid
  • Part 1. Spooky
  • 1. What's Going On: Looking at the Quantum World
  • 2. The Courageous Formulation: Austere Quantum Mechanics
  • 3. Why Would Anybody Think This? How Quantum Mechanics Came to Be
  • 4. What Cannot Be Known, Because It Does Not Exist: Uncertainty and Complementarity
  • 5. Entangled Up in Blue: Wave Functions of Many Parts
  • Part 2. Splitting
  • 6. Splitting the Universe: Decoherence and Parallel Worlds
  • 7. Order and Randomness: Where Probability Comes From
  • 8. Does This Ontological Commitment Make Me Look Fat? A Socratic Dialogue on Quantum Puzzles
  • 9. Other Ways: Alternatives to Many-Worlds
  • 10. The Human Side: Living and Thinking in a Quantum Universe
  • Part 3. Spacetime
  • 11. Why Is There Space? Emergence and Locality
  • 12. A World of Vibrations: Quantum Field Theory
  • 13. Breathing in Empty Space: Finding Gravity within Quantum Mechanics
  • 14. Beyond Space and Time: Holography, Black Holes, and the Limits of Locality
  • Epilogue: Everything Is Quantum
  • Appendix: The Story of Virtual Particles
  • Acknowledgments
  • Further Reading
  • References
  • Index
Review by Booklist Review

Armchair physicists everywhere know how Niels Bohr bested Albert Einstein in their clash over quantum mechanics. But Carroll convincingly shows that Bohr prevailed by offering powerful formulas while dodging the questions Einstein raised about the fundamental realities behind those formulas. Readers revisit these questions by pondering the puzzling consequences of any measurement in Bohr's quantum system and considering the baffling failure of that system to explain the dynamics of quantum phenomena. Laying aside Bohr's mystifications, Carroll finds a rigorous response to Einstein's concerns in the quantum theorizing of Hugh Everett III. Readers will recognize the attractiveness of Everett's quantum paradigm, offering a clear picture of reality, not merely a blur of probabilities. They will appreciate, too, the conceptual parsimony of a quantum science distilling its entire framework in a single wave formula. But they must confront the paradigm's controversial implication that every quantum event spawns a new, parallel universe. Though many physicists resist Everett's notion of physically unobservable universes, Carroll argues persuasively that every available alternative to Everett's formulation entangles scientists in inconsistencies likely to foreclose progress in developing a much-needed quantum explanation of gravity. Readers in this universe (and others?) will relish the opportunity to explore the frontiers of science in the company of titans.--Bryce Christensen Copyright 2010 Booklist

From Booklist, Copyright (c) American Library Association. Used with permission.
Review by Publisher's Weekly Review

Theoretical physicist Carroll (The Big Picture) explores holes in the foundation of modern physics in this challenging, provocative book. Quantum mechanics is, according to Carroll, "the deepest, most comprehensive view of reality we know of." But while it answers questions about how the universe works at the microscopic level, quantum theory still, nearly 100 years after its introduction, has unresolved issues. Albert Einstein disdained quantum mechanics as "spooky" and said it would never be complete, and so far, Carroll says, he's been right. Carroll presents his argument with words rather than math, striving to make even the most abstract ideas clear. At the heart of his discussion are equations called "wave functions" that describe the real world. The problem is that wave functions have many possible solutions and each describes a branch, or another reality, in spacetime. Carroll gives a sense of both the frustration and the wonder that the many-worlds theory inspires, and what it implies about free will and human consciousness. Moving smoothly through different topics and from objects as small as particles to those as enormous as black holes, Carroll's exploration of quantum theory introduces readers to some of the most groundbreaking ideas in physics today. (Sept.) This review has been updated with more precise language regarding wave functions.

(c) Copyright PWxyz, LLC. All rights reserved
Review by Library Journal Review

Caltech theoretical physicist Carroll (The Big Picture) wants readers to know that the current understanding of reality is wrong, arguing that the Multi Worlds theory related to quantum reality is the correct view to perceive the universe. The author begins with a statement that many physicists believe they fully understand the universe based on ideas developed in 1927, but that they only understand a piece of the bigger picture. After a brief historical overview of the development of quantum physics, Carroll spends the remainder of the book explaining that every time an event is observed, reality splits into different branches. This is ultimately the Multi Worlds idea: that each observation or event causes a duplicate reality to form where that observation or event did not occur. Carroll uses some equations to prove his concepts and describes them clearly. Readers unfamiliar with quantum physics may have difficulty grasping the concepts, but after some rereading of more advanced ideas (such as the wave function), they should begin to understand the hypotheses provided. VERDICT Fans of popular science authors such as Neil deGrasse Tyson and John Gribbin will find great joy while exploring these groundbreaking concepts. [See Prepub Alert, 3/4/19.]--Jason L. Steagall, formerly with Gateway Technical Coll. Lib., Elkhorn, WI

(c) Copyright Library Journals LLC, a wholly owned subsidiary of Media Source, Inc. No redistribution permitted.
Review by Kirkus Book Review

The latest attempt to describe the "holy grail of modern physics."Although in theory it works brilliantly, no one fully understands quantum mechanics. However, Carroll (Theoretical Physics/Caltech; The Big Picture: On the Origins of Life, Meaning, and the Universe Itself, 2016, etc.) works hardand somewhat successfullyto deliver an accessible explanation. "Quantum mechanics," he writes, "is unique among physical theories in drawing an apparent distinction between what we see and what really is.If we free our minds from certain old-fashioned and intuitive ways of thinking, we find that quantum mechanics isn't hopelessly mystical or inexplicable. It's just physics." This doesn't bother most physicists, who belong to the shut-up-and-calculate school, and searching for a deep meaning is unfashionable. Carroll swims against the tide, explaining several theories that attempt to describe what is happening, with an emphasis on his favorite, the many-worlds theory. He begins by pointing out that in our everyday world, the world of classical mechanics, every object has two features: a location and a velocity. Everything is transparent; whatever happens to that object is explained by classical laws of physicsessentially Newton's. In contrast, every quantum object has one feature: a wave function defined by Schrdinger's 1926 equation, which explains what happens when one measures it. Although true for objects of any size, quantum mechanics becomes essential at the atomic and subatomic levels. Some popular writers proclaim that this demonstrates our ignorance or perhaps a mysterious spiritual element in the universe. The author disagrees but admits that, as a description of how reality works, it makes no sense. Eschewing mathematics, Carroll labors mightily to reveal the meaning behind quantum mechanics with a major detour into general relativity, both of which might benefit from at least a little math.Readers who remember freshman college physics will be intrigued; others will struggle. Copyright Kirkus Reviews, used with permission.

Copyright (c) Kirkus Reviews, used with permission.

1   What's Going On:   Looking at the Quantum World   Albert Einstein, who had a way with words as well as with equations, was the one who stuck quantum mechanics with the label it has been unable to shake ever since: spukhafte, usually translated from German to English as "spooky." If nothing else, that's the impression we get from most public discussions of quantum mechanics. We're told that it's a part of physics that is unavoidably mystifying, weird, bizarre, unknowable, strange, baffling. Spooky.   Inscrutability can be alluring. Like a mysterious, sexy stranger, quantum mechanics tempts us into projecting all sorts of qualities and capacities onto it, whether they are there or not. A brief search for books with "quantum" in the title reveals the following list of purported applications:   Quantum Success   Quantum Leadership   Quantum Consciousness   Quantum Touch   Quantum Yoga   Quantum Eating   Quantum Psychology   Quantum Mind   Quantum Glory   Quantum Forgiveness   Quantum Theology   Quantum Happiness   Quantum Poetry   Quantum Teaching   Quantum Faith   Quantum Love   For a branch of physics that is often described as only being relevant to microscopic processes involving subatomic particles, that's a pretty impressive rZsumZ.   To be fair, quantum mechanics-or "quantum physics," or "quantum theory," the labels are all interchangeable-is not only relevant to microscopic processes. It describes the whole world, from you and me to stars and galaxies, from the centers of black holes to the beginning of the universe. But it is only when we look at the world in extreme close-up that the apparent weirdness of quantum phenomena becomes unavoidable.   One of the themes in this book is that quantum mechanics doesn't deserve the connotations of spookiness, in the sense of some ineffable mystery that it is beyond the human mind to comprehend. Quantum mechanics is amazing; it is novel, profound, mind-stretching, and a very different view of reality from what we're used to. Science is like that sometimes. But if the subject seems difficult or puzzling, the scientific response is to solve the puzzle, not to pretend it's not there. There's every reason to think we can do that for quantum mechanics just like any other physical theory.   Many presentations of quantum mechanics follow a typical pattern. First, they point to some counterintuitive quantum phenomenon. Next, they express bafflement that the world can possibly be that way, and despair of it making sense. Finally (if you're lucky), they attempt some sort of explanation.   Our theme is prizing clarity over mystery, so I don't want to adopt that strategy. I want to present quantum mechanics in a way that will make it maximally understandable right from the start. It will still seem strange, but that's the nature of the beast. What it won't seem, hopefully, is inexplicable or unintelligible.   We will make no effort to follow historical order. In this chapter we'll look at the basic experimental facts that force quantum mechanics upon us, and in the next we'll quickly sketch the Many-Worlds approach to making sense of those observations. Only in the chapter after that will we offer a semi-historical account of the discoveries that led people to contemplate such a dramatically new kind of physics in the first place. Then we'll hammer home exactly how dramatic some of the implications of quantum mechanics really are.   With all that in place, over the rest of the book we can set about the fun task of seeing where all this leads, demystifying the most striking features of quantum reality.     ¡¡¡   Physics is one of the most basic sciences, indeed one of the most basic human endeavors. We look around the world, we see it is full of stuff. What is that stuff, and how does it behave?   These are questions that have been asked ever since people started asking questions. In ancient Greece, physics was thought of as the general study of change and motion, of both living and nonliving matter. Aristotle spoke a vocabulary of tendencies, purposes, and causes. How an entity moves and changes can be explained by reference to its inner nature and to external powers acting upon it. Typical objects, for example, might by nature be at rest; in order for them to move, it is necessary that something be causing that motion.   All of this changed thanks to a clever chap named Isaac Newton. In 1687 he published Principia Mathematica, the most important work in the history of physics. It was there that he laid the groundwork for what we now call "classical" or simply "Newtonian" mechanics. Newton blew away any dusty talk of natures and purposes, revealing what lay underneath: a crisp, rigorous mathematical formalism with which teachers continue to torment students to this very day.   Whatever memory you may have of high-school or college homework assignments dealing with pendulums and inclined planes, the basic ideas of classical mechanics are pretty simple. Consider an object such as a rock. Ignore everything about the rock that a geologist might consider interesting, such as its color and composition. Put aside the possibility that the basic structure of the rock might change, for example, if you smashed it to pieces with a hammer. Reduce your mental image of the rock down to its most abstract form: the rock is an object, and that object has a location in space, and that location changes with time.   Classical mechanics tells us precisely how the position of the rock changes with time. We're very used to that by now, so it's worth reflecting on how impressive this is. Newton doesn't hand us some vague platitudes about the general tendency of rocks to move more or less in this or that fashion. He gives us exact, unbreakable rules for how everything in the universe moves in response to everything else-rules that can be used to catch baseballs or land rovers on Mars.   Here's how it works. At any one moment, the rock will have a position and also a velocity, a rate at which it's moving. According to Newton, if no forces act on the rock, it will continue to move in a straight line at constant velocity, for all time. (Already this is a major departure from Aristotle, who would have told you that objects need to be constantly pushed if they are to be kept in motion.) If a force does act on the rock, it will cause acceleration-some change in the velocity of the rock, which might make it go faster, or slower, or merely alter its direction-in direct proportion to how much force is applied.   That's basically it. To figure out the entire trajectory of the rock, you need to tell me its position, its velocity, and what forces are acting on it. Newton's equations tell you the rest. Forces might include the force of gravity, or the force of your hand if you pick up the rock and throw it, or the force from the ground when the rock comes to land. The idea works just as well for billiard balls or rocket ships or planets. The project of physics, within this classical paradigm, consists essentially of figuring out what makes up the stuff of the universe (rocks and so forth) and what forces act on them.   Classical physics provides a straightforward picture of the world, but a number of crucial moves were made along the way to setting it up. Notice that we had to be very specific about what information we required to figure out what would happen to the rock: its position, its velocity, and the forces acting on it. We can think of those forces as being part of the outside world, and the important information about the rock itself as consisting of just its position and velocity. The acceleration of the rock at any moment in time, by contrast, is not something we need to specify; that's exactly what Newton's laws allow us to calculate from the position and the velocity.   Together, the position and velocity make up the state of any object in classical mechanics. If we have a system with multiple moving parts, the classical state of that entire system is just a list of the states of each of the individual parts. The air in a normal-sized room will have perhaps 10 molecules of different types, and the state of that air would be a list of the position and velocity of every one of them. (Strictly speaking physicists like to use the momentum of each particle, rather than its velocity, but as far as Newtonian mechanics is concerned the momentum is simply the particle's mass times its velocity.) The set of all possible states that a system could have is known as the phase space of the system.   The French mathematician Pierre-Simon Laplace pointed out a profound implication of the classical-mechanics way of thinking. In principle, a vast intellect could know the state of literally every object in the universe, from which it could deduce everything that would happen in the future, as well as everything that had happened in the past. Laplace's demon is a thought experiment, not a realistic project for an ambitious computer scientist, but the implications of the thought experiment are profound. Newtonian mechanics describes a deterministic, clockwork universe.   The machinery of classical physics is so beautiful and compelling that it seems almost inescapable once you grasp it. Many great minds who came after Newton were convinced that the basic superstructure of physics had been solved, and future progress lay in figuring out exactly what realization of classical physics (which particles, which forces) was the right one to describe the universe as a whole. Even relativity, which was world-transforming in its own way, is a variety of classical mechanics rather than a replacement for it.   Then along came quantum mechanics, and everything changed.     ¡¡¡   Alongside Newton's formulation of classical mechanics, the invention of quantum mechanics represents the other great revolution in the history of physics. Unlike anything that had come before, quantum theory didn't propose a particular physical model within the basic classical framework; it discarded that framework entirely, replacing it with something profoundly different.   The fundamental new element of quantum mechanics, the thing that makes it unequivocally distinct from its classical predecessor, centers on the question of what it means to measure something about a quantum system. What exactly a measurement is, and what happens when we measure something, and what this all tells us about what's really happening behind the scenes: together, these questions constitute what's called the measurement problem of quantum mechanics. There is absolutely no consensus within physics or philosophy on how to solve the measurement problem, although there are a number of promising ideas.   Attempts to address the measurement problem have led to the emergence of a field known as the interpretation of quantum mechanics, although the label isn't very accurate. "Interpretations" are things that we might apply to a work of literature or art, where people might have different ways of thinking about the same basic object. What's going on in quantum mechanics is something else: a competition between truly distinct scientific theories, incompatible ways of making sense of the physical world. For this reason, modern workers in this field prefer to call it "foundations of quantum mechanics." The subject of quantum foundations is part of science, not literary criticism.   Nobody ever felt the need to talk about "interpretations of classical mechanics"-classical mechanics is perfectly transparent. There is a mathematical formalism that speaks of positions and velocities and trajectories, and oh, look: there is a rock whose actual motion in the world obeys the predictions of that formalism. There is, in particular, no such thing as a measurement problem in classical mechanics. The state of the system is given by its position and its velocity, and if we want to measure those quantities, we simply do so. Of course, we can measure the system sloppily or crudely, thereby obtaining imprecise results or altering the system itself. But we don't have to; just by being careful, we can precisely measure everything there is to know about the system without altering it in any noticeable way. Classical mechanics offers a clear and unambiguous relationship between what we see and what the theory describes.   Quantum mechanics, for all of its successes, offers no such thing. The enigma at the heart of quantum reality can be summed up in a simple motto: what we see when we look at the world seems to be fundamentally different from what actually is.     ¡¡¡   Think about electrons, the elementary particles orbiting atomic nuclei, whose interactions are responsible for all of chemistry and hence almost everything interesting around you right now. As we did with the rock, we can ignore some of the electron's specific properties, like its spin and the fact that it has an electric field. (Really we could just stick with the rock as our example-rocks are quantum systems just as much as electrons are-but switching to a subatomic particle helps us remember that the features distinguishing quantum mechanics only really become evident when we consider very tiny objects indeed.)   Unlike in classical mechanics, where the state of a system is described by its position and velocity, the nature of a quantum system is something a bit less concrete. Consider an electron in its natural habitat, orbiting the nucleus of an atom. You might think, from the word "orbit" as well as from the numerous cartoon depictions of atoms you have doubtless been exposed to over the years, that the orbit of an electron is more or less like the orbit of a planet in the solar system. The electron (so you might think) has a location, and a velocity, and as time passes it zips around the central nucleus in a circle or maybe an ellipse.   Quantum mechanics suggests something different. We can measure values of the location or velocity (though not at the same time), and if we are sufficiently careful and talented experimenters we will obtain some answer. But what we're seeing through such a measurement is not the actual, complete, unvarnished state of the electron. Indeed, the particular measurement outcome we will obtain cannot be predicted with perfect confidence, in a profound departure from the ideas of classical mechanics. The best we can do is to predict the probability of seeing the electron in any particular location or with any particular velocity.   The classical notion of the state of a particle, "its location and its velocity," is therefore replaced in quantum mechanics by something utterly alien to our everyday experience: a cloud of probability. For an electron in an atom, this cloud is more dense toward the center and thins out as we get farther away. Where the cloud is thickest, the probability of seeing the electron is highest; where it is diluted almost to imperceptibility, the probability of seeing the electron is vanishingly small.   This cloud is often called a wave function, because it can oscillate like a wave, as the most probable measurement outcome changes over time. We usually denote a wave function by , the Greek letter Psi. For every possible measurement outcome, such as the position of the particle, the wave function assigns a specific number, called the amplitude associated with that outcome. The amplitude that a particle is at some position x0, for example, would be written (x0). Excerpted from Something Deeply Hidden: Quantum Worlds and the Emergence of Spacetime by Sean Carroll All rights reserved by the original copyright owners. Excerpts are provided for display purposes only and may not be reproduced, reprinted or distributed without the written permission of the publisher.