How we learn The surprising truth about when, where, and why it happens

Benedict Carey

Book - 2014

Saved in:

2nd Floor Show me where

153.15/Carey
1 / 1 copies available
Location Call Number   Status
2nd Floor 153.15/Carey Checked In
Subjects
Published
New York : Random House 2014.
Language
English
Main Author
Benedict Carey (author)
Physical Description
xvi, 254 pages
Bibliography
Includes bibliographic references and index.
ISBN
9780812993882
  • Introduction: Broaden the Margins
  • Part 1. Basic Theory
  • 1. The story Maker
  • The Biology of Memory
  • 2. The Power of Forgetting
  • A New Theory of Learning
  • Part 2. Retention
  • 3. Breaking Good Habits
  • The Effect of Context on Learning
  • 4. Spacing Out
  • The Advantage of Breaking Up Study Time
  • 5. The Hidden Value of Ignorance
  • The Many Dimensions of Testing
  • Part 3. Problem Solving
  • 6. The Upside of Distraction
  • The Role of Incubation in Problem Solving
  • 7. Quitting Before You're Ahead
  • The Accumulating Gifts of Percolation
  • 8. Being Mixed Up
  • Interleaving as an Aid to Comprehension
  • Part 4. Tapping the Subconscious
  • 9. Learning Without Thinking
  • Harnessing Perceptual Discrimination
  • 10. You Snooze, You Win
  • The Consolidating Role of Sleep
  • Conclusion: The Foraging Brain
  • Appendix: Eleven Essential Questions
  • Acknowledgments
  • Notes
  • Index
Review by New York Times Review

A CALL TO ACTION: Women, Religion, Violence, and Power, by Jimmy Carter. (Simon & Schuster, $16.) President Carter's 28th book surveys global discrimination against women, much of which he attributes to distorted interpretations of major religions and sacred texts. Carter argues that these flawed approaches, exacerbated by the world's "growing tolerance of violence and warfare," need immediate corrective action. SWEETNESS #9, by Stephan Eirik Clark. (Back Bay/Little, Brown, $15.) At the outset of this novel, an eager young flavor chemist, David Leveraux, is testing a promising new sugar substitute when he notes troubling side effects. Years later, the chemical has saturated the American diet, and its insidious effects are everywhere, including David's own family: His heavyset wife flits between fad diets, his son drops verbs from his speech and his unhappy daughter goes vegan in protest. HOW WE LEARN: The Surprising Truth About When, Where, and Why It Happens, by Benedict Carey. (Random House, $16.) Like many other students, Carey, a New York Times science reporter, "grew up believing that learning was all self-discipline." After following research that investigates how learning actually occurs, he reconsiders that belief, presenting strategies to help us study smarter. THE WHEREWITHAL, by Philip Schultz. (Norton, $16.95.) This novel in verse centers on Henryk Stanislaw Wyrzykowski, a man dodging the Vietnam War and translating the journal his mother kept during a massacre in their hometown in 1940s Poland. Steeped in tragedy, the story captures the "strain of finding the wherewithal to face suffering on every human scale," Adam Plunkett wrote here. THE SECRET HISTORY OF WONDER WOMAN, by Jill Lepore. (Vintage, $16.95.) Wonder Woman's back story may begin among the mythic Amazons, but her origins are distinctly American, As it turns out, her "secret history" is due in large part to her eccentric creator, William Moulton Marston, whose fraught feminism and kinky proclivities were evident on the page. (In Lepore's telling, it was no coincidence that the superhero was tied up in virtually every comic.) THE INVENTION OF EXILE, by Vanessa Manko. (Penguin, $16.) A Russian émigré arrives in America in 1913, but after being sent back to Russia and, later, traveling to Mexico, spends a lifetime trying to return. This debut novel tells the story of an "epic love frustrated but never destroyed by political antagonism between nations," our reviewer, Jonathan Dee, wrote.

Copyright (c) The New York Times Company [August 23, 2015]
Review by Booklist Review

*Starred Review* From his own spotty learning experience and his work as a science reporter for the New York Times, Carey has learned a thing or two about the complex, sometimes arduous, and often highly individual process of learning. Carey explores many theories on how we learn, including the impacts of napping, background music, doodling, and sleep patterns and the importance of making mistakes. One major conclusion: there is no right or wrong way to learn, but when the brain lives with whatever you're studying, it learns the material better. Carey argues that small alterations in learning patterns can help us retain what we learn and connect it to what we already know. Drawing on research and quirky experimentation in biology, neuroscience, and psychology, Carey explores the gamut of the learning process. He begins by explaining how the brain works, then goes on to techniques that strengthen the learning process, then comprehension techniques that help solve problems, and, finally, deeper exploration of particular ways (perceptual models and memory consolidation during sleep) to tap into the subconscious mind to develop skills for learning without thinking. A totally fascinating look at learning, with helpful insights for students and any reader interested in learning everything from a new language to flying to playing chess.--Bush, Vanessa Copyright 2014 Booklist

From Booklist, Copyright (c) American Library Association. Used with permission.
Review by Publisher's Weekly Review

Carey provides a rich exploration into the theoretical underpinnings of the most recent research on learning. He unravels many myths, such as the benefits of studying in quiet, with clear prose supported by anecdotes, experiments, and examples. The main drawback is that several of Carey's exercises for readers are not entirely conducive to the audio format. Reader Kramer has a deep, almost jovial voice that manages to convey the authority and expertise of Carey's text. He is exceptionally adept at pacing and emphasis, making it easy to follow the denser parts of the text. When possible, he also adds enough emotion to his voice to connect with the reader. For instance, when Carey is relating some of his own success and failures, one can hear the hint of a smile in Kramer's voice, which enhances the listening experience. A Random House hardcover. (Sept.) © Copyright PWxyz, LLC. All rights reserved.

(c) Copyright PWxyz, LLC. All rights reserved
Review by Library Journal Review

Carey, a science reporter for the New York Times, here examines how the human brain ingests, retains, recalls, solves problems, and builds meaning in the day-to-day learning process. Part popular science, part self-help, the book questions much of the folk wisdom concerning studying and learning (e.g., studying in the same quiet place actually doesn't aid recall and comprehension). Carey also picks apart how different study tactics apply to different content and forms of learning. The book is aimed at people trying to increase their learning capabilities, so readers looking for a broader approach should instead read a scholarly work. Steve Kramer's narration keeps listeners engaged with an energetic and thoughtful style. VERDICT Fans of popular-science books will enjoy the upbeat narration, interactive exercises, and practical scope of this work. Educators, hard-core students, and helicopter parents will get some handy self-help tips from the appendixes. ["This highly engaging read is recommended for educators from early childhood through higher education and beyond," read the review of the Random hc, LJ 9/1/14.]-Cliff Landis, Georgia State Univ. Lib., Atlanta (c) Copyright 2015. Library Journals LLC, a wholly owned subsidiary of Media Source, Inc. No redistribution permitted.

(c) Copyright Library Journals LLC, a wholly owned subsidiary of Media Source, Inc. No redistribution permitted.
Review by Kirkus Book Review

Carey (Poison Most Vial: A Mystery, 2012, etc.) choseto write scientific mysteries for kids as a distraction from his day job as ascience reporter for the New York Times, until it dawned on himthat he had an amazing story to share: Ostensibly poor study habits can beimportant to improving learning strategies.Recent experiments in cognition offer startling insightsinto how the brain works, contradicting traditional beliefs about the merits ofconcentration and self-discipline. "Distractions can aid learning," writes theauthor. "Napping does, too. Quitting before a project is done: not bad, as analmost done project lingers in memory far longer than one that is completed."Taking a break and texting or checking emails when faced with a knotty mathproblem may actually facilitate a solution. New research indicates that memoryis a two-stage process: In addition to storage, there is retrieval, which is anassociative process. What we remember from one moment to the next may not beidentical; images are embedded "in networks of perceptions, facts and thoughts,slightly different combinations of which bubble up each time." Carey describesexperiments that demonstrate the remarkable fact that if subjects are shown aseries of pictures or lines of poetry that they are asked to memorize, theirrecall will improve over several days without further practice. In the case ofa meaningless array of syllables or numbers, however, this is not the case."Forgetting is not only a passive process of decay but also an active one, offiltering," and the brain treats nonsense syllables as dispensable clutter.Forgetting is part of the mental process of fixing a memory. If we aremotivated to solve a difficult problem, our brains will take advantage of abreak to continue working "offline" while we turn our attention elsewhere.A fascinating perspective on how we can benefit from thedistractions of daily life. Copyright Kirkus Reviews, used with permission.

Copyright (c) Kirkus Reviews, used with permission.

Chapter One The Story Maker The Biology of Memory The science of learning is, at bottom, a study of the mental muscle doing the work--the living brain--and how it manages the streaming sights, sounds, and scents of daily life. That it does so at all is miracle enough. That it does so routinely is beyond extraordinary. Think of the waves of information rushing in every waking moment, the hiss of the kettle, the flicker of movement in the hall, the twinge of back pain, the tang of smoke. Then add the demands of a typical layer of multitasking--say, preparing a meal while monitoring a preschooler, periodically returning work emails, and picking up the phone to catch up with a friend. Insane. The machine that can do all that at once is more than merely complex. It's a cauldron of activity. It's churning like a kicked beehive. Consider several numbers. The average human brain contains 100 billion neurons, the cells that make up its gray matter. Most of these cells link to thousands of other neurons, forming a universe of intertwining networks that communicate in a ceaseless, silent electrical storm with a storage capacity, in digital terms, of a million gigabytes. That's enough to hold three million TV shows. This biological machine hums along even when it's "at rest," staring blankly at the bird feeder or some island daydream, using about 90 percent of the energy it burns while doing a crossword puzzle. Parts of the brain are highly active during sleep, too. The brain is a dark, mostly featureless planet, and it helps to have a map. A simple one will do, to start. The sketch below shows several areas that are central to learning: the entorhinal cortex, which acts as a kind of filter for incoming information; the hippocampus, where memory formation begins; and the neocortex, where conscious memories are stored once they're flagged as keepers. This diagram is more than a snapshot. It hints at how the brain operates. The brain has modules, specialized components that divide the labor. The entorhinal cortex does one thing, and the hippocampus does another. The right hemisphere performs different functions from the left one. There are dedicated sensory areas, too, processing what you see, hear, and feel. Each does its own job and together they generate a coherent whole, a continually updating record of past, present, and possible future. In a way, the brain's modules are like specialists in a movie production crew. The cinematographer is framing shots, zooming in tight, dropping back, stockpiling footage. The sound engineer is recording, fiddling with volume, filtering background noise. There are editors and writers, a graphics person, a prop stylist, a composer working to supply tone, feeling--the emotional content--as well as someone keeping the books, tracking invoices, the facts and figures. And there's a director, deciding which pieces go where, braiding all these elements together to tell a story that holds up. Not just any story, of course, but the one that best explains the "material" pouring through the senses. The brain interprets scenes in the instants after they happen, inserting judgments, meaning, and context on the fly. It also reconstructs them later on--what exactly did the boss mean by that comment?--scrutinizing the original footage to see how and where it fits into the larger movie. It's a story of a life--our own private documentary--and the film "crew" serves as an animating metaphor for what's happening behind the scenes. How a memory forms. How it's retrieved. Why it seems to fade, change, or grow more lucid over time. And how we might manipulate each step, to make the details richer, more vivid, clearer. Remember, the director of this documentary is not some film school graduate, or a Hollywood prince with an entourage. It's you. *** Before wading into brain biology, I want to say a word about metaphors. They are imprecise, practically by definition. They obscure as much as they reveal. And they're often self-serving, crafted to serve some pet purpose--in the way that the "chemical imbalance" theory of depression supports the use of antidepressant medication. (No one knows what causes depression or why the drugs have the effects they do.) Fair enough, all around. Our film crew metaphor is a loose one, to be sure--but then so is scientists' understanding of the biology of memory, to put it mildly. The best we can do is dramatize what matters most to learning, and the film crew does that just fine. To see how, let's track down a specific memory in our own brain. Let's make it an interesting one, too, not the capital of Ohio or a friend's phone number or the name of the actor who played Frodo. No, let's make it the first day of high school. Those tentative steps into the main hallway, the leering presence of the older kids, the gunmetal thump of slamming lockers. Everyone over age fourteen remembers some detail from that day, and usually an entire video clip. That memory exists in the brain as a network of linked cells. Those cells activate--or "fire"--together, like a net of lights in a department store Christmas display. When the blue lights blink on, the image of a sleigh appears; when the reds come on, it's a snowflake. In much the same way, our neural networks produce patterns that the brain reads as images, thoughts, and feelings. The cells that link to form these networks are called neurons. A neuron is essentially a biological switch. It receives signals from one side and--when it "flips" or fires--sends a signal out the other, to the neurons to which it's linked. The neuron network that forms a specific memory is not a random collection. It includes many of the same cells that flared when a specific memory was first formed--when we first heard that gunmetal thump of lockers. It's as if these cells are bound in collective witness of that experience. The connections between the cells, called synapses, thicken with repeated use, facilitating faster transmission of signals. Intuitively, this makes some sense; many remembered experiences feel like mental reenactments. But not until 2008 did scientists capture memory formation and retrieval directly, in individual human brain cells. In an experiment, doctors at the University of California, Los Angeles, threaded filament-like electrodes deep into the brains of thirteen people with epilepsy who were awaiting surgery. This is routine practice. Epilepsy is not well understood; the tiny hurricanes of electrical activity that cause seizures seem to come out of the blue. These squalls often originate in the same neighborhood of the brain for any one individual, yet the location varies from person to person. Surgeons can remove these small epicenters of activity but first they have to find them, by witnessing and recording a seizure. That's what the electrodes are for, pinpointing location. And it takes time. Patients may lie in the hospital with electrode implants for days on end before a seizure strikes. The UCLA team took advantage of this waiting period to answer a fundamental question. Each patient watched a series of five- to ten-second video clips of well-known shows like Seinfeld and The Simpsons, celebrities like Elvis, or familiar landmarks. After a short break, the researchers asked each person to freely recall as many of the videos as possible, calling them out as they came to mind. During the initial viewing of the videos, a computer had recorded the firing of about one hundred neurons. The firing pattern was different for each clip; some neurons fired furiously and others were quiet. When a patient later recalled one of the clips, say of Homer Simpson, the brain showed exactly the same pattern as it had originally, as if replaying the experience. "It's astounding to see this in a single trial; the phenomenon is strong, and we knew we were listening in the right place," the senior author of the study, Itzhak Fried, a professor of neurosurgery at UCLA and Tel Aviv University, told me. There the experiment ended, and it's not clear what happened to the memory of those brief clips over time. If a person had seen hundreds of Simpsons episodes, then this five-second clip of Homer might not stand out for long. But it could. If some element of participating in the experiment was especially striking--for example, the sight of a man in a white coat fiddling with wires coming out of your exposed brain as Homer belly-laughed--then that memory could leap to mind easily, for life. My first day of high school was in September 1974. I can still see the face of the teacher I approached in the hallway when the bell rang for the first class. I was lost, the hallway was swarmed, my head racing with the idea that I might be late, might miss something. I can still see streams of dusty morning light in that hallway, the ugly teal walls, an older kid at his locker, stashing a pack of Winstons. I swerved beside the teacher and said, "Excuse me" in a voice that was louder than I wanted. He stopped, looked down at my schedule: a kind face, wire-rimmed glasses, wispy red hair. "You can follow me," he said, with a half smile. "You're in my class." Saved. I have not thought about that for more than thirty-five years, and yet there it is. Not only does it come back but it does so in rich detail, and it keeps filling itself out the longer I inhabit the moment: here's the sensation of my backpack slipping off my shoulder as I held out my schedule; now the hesitation in my step, not wanting to walk with a teacher. I trailed a few steps behind. This kind of time travel is what scientists call episodic, or autobiographical memory, for obvious reasons. It has some of the same sensual texture as the original experience, the same narrative structure. Not so with the capital of Ohio, or a friend's phone number: We don't remember exactly when or where we learned those things. Those are what researchers call semantic memories, embedded not in narrative scenes but in a web of associations. The capital of Ohio, Columbus, may bring to mind images from a visit there, the face of a friend who moved to Ohio, or the grade school riddle, "What's round on both sides and high in the middle?" This network is factual, not scenic. Yet it, too, "fills in" as the brain retrieves "Columbus" from memory. In a universe full of wonders, this has to be on the short list: Some molecular bookmark keeps those neuron networks available for life and gives us nothing less than our history, our identity. Scientists do not yet know how such a bookmark could work. It's nothing like a digital link on a computer screen. Neural networks are continually in flux, and the one that formed back in 1974 is far different from the one I have now. I've lost some detail and color, and I have undoubtedly done a little editing in retrospect, maybe a lot. It's like writing about a terrifying summer camp adventure in eighth grade, the morning after it happened, and then writing about it again, six years later, in college. The second essay is much different. You have changed, so has your brain, and the biology of this change is shrouded in mystery and colored by personal experience. Still, the scene itself--the plot--is fundamentally intact, and researchers do have an idea of where that memory must live and why. It's strangely reassuring, too. If that first day of high school feels like it's right there on the top of your head, it's a nice coincidence of language. Because, in a sense, that's exactly where it is. *** For much of the twentieth century scientists believed that memories were diffuse, distributed through the areas of the brain that support thinking, like pulp in an orange. Any two neurons look more or less the same, for one thing; and they either fire or they don't. No single brain area looked essential for memory formation. Scientists had known since the nineteenth century that some skills, like language, are concentrated in specific brain regions. Yet those seemed to be exceptions. In the 1940s, the neuroscientist Karl Lashley showed that rats that learned to navigate a maze were largely unfazed when given surgical injuries in a variety of brain areas. If there was some single memory center, then at least one of those incisions should have caused severe deficits. Lashley concluded that virtually any area of the thinking brain was capable of supporting memory; if one area was injured, another could pick up the slack. In the 1950s, however, this theory began to fall apart. Brain scientists began to discover, first, that developing nerve cells--baby neurons, so to speak--are coded to congregate in specific locations in the brain, as if preassigned a job. "You're a visual cell, go to the back of the brain." "You, over there, you're a motor neuron, go straight to the motor area." This discovery undermined the "interchangeable parts" hypothesis. The knockout punch fell when an English psychologist named Brenda Milner met a Hartford, Connecticut, man named Henry Molaison. Molaison was a tinkerer and machine repairman who had trouble keeping a job because he suffered devastating seizures, as many as two or three a day, which came with little warning and often knocked him down, out cold. Life had become impossible to manage, a daily minefield. In 1953, at the age of twenty-seven, he arrived at the office of William Beecher Scoville, a neurosurgeon at Hartford Hospital, hoping for relief. Molaison probably had a form of epilepsy, but he did not do well on antiseizure drugs, the only standard treatment available at the time. Scoville, a well-known and highly skilled surgeon, suspected that whatever their cause the seizures originated in the medial temporal lobes. Each of these lobes--there's one in each hemisphere, mirroring one another, like the core of a split apple--contains a structure called the hippocampus, which was implicated in many seizure disorders. Scoville decided that the best option was to surgically remove from Molaison's brain two finger-shaped slivers of tissue, each including the hippocampus. It was a gamble; it was also an era when many doctors, Scoville prominent among them, considered brain surgery a promising treatment for a wide variety of mental disorders, including schizophrenia and severe depression. And sure enough, postop, Molaison had far fewer seizures. He also lost his ability to form new memories. Every time he had breakfast, every time he met a friend, every time he walked the dog in the park, it was as if he was doing so for the first time. He still had some memories from before the surgery, of his parents, his childhood home, of hikes in the woods as a kid. He had excellent short-term memory, the ability to keep a phone number or name in mind for thirty seconds or so by rehearsing it, and he could make small talk. He was as alert and sensitive as any other young man, despite his loss. Yet he could not hold a job and lived, more so than any mystic, in the moment. Excerpted from How We Learn: The Surprising Truth about When, Where, and Why It Happens by Benedict Carey All rights reserved by the original copyright owners. Excerpts are provided for display purposes only and may not be reproduced, reprinted or distributed without the written permission of the publisher.