The future of the mind The scientific quest to understand, enhance, and empower the mind

Michio Kaku

Book - 2014

A survey of current research into the human mind reveals how top international laboratories have innovated unique technologies for recording profound mental capabilities and enabling controversial opportunities in the field of cognition enhancement.

Saved in:

2nd Floor Show me where

612.8/Kaku
1 / 1 copies available
Location Call Number   Status
2nd Floor 612.8/Kaku Checked In
Subjects
Published
New York : Doubleday, a division of Random House, LLC [2014]
[Place of publication not identified] : [2014]
Language
English
Main Author
Michio Kaku (author)
Edition
First edition
Physical Description
xviii, 377 pages : illustrations ; 25 cm
Bibliography
Includes bibliographical references (pages 355-356) and index.
ISBN
9780385530828
  • Acknowledgments
  • Introduction
  • Book I. The Mind and Consciousness
  • 1. Unlocking the Mind
  • 2. Consciousness-A Physicist's Viewpoint
  • Book II. Mind Over Matter
  • 3. Telepathy: A Penny for Your Thoughts
  • 4. Telekinesis: Mind Controlling Matter
  • 5. Memories and Thoughts Made to Order
  • 6. Einstein's Brain and Enhancing Our Intelligence
  • Book III. Altered Consciousness
  • 7. In Your Dreams
  • 8. Can the Mind Be Controlled?
  • 9. Altered States of Consciousness
  • 10. The Artificial Mind and Silicon Consciousness
  • 11. Reverse Engineering the Brain
  • 12. The Future: Mind Beyond Matter
  • 13. The Mind as Pure Energy
  • 14. The Alien Mind
  • 15. Concluding Remarks
  • Appendix: Quantum Consciousness?
  • Notes
  • Suggested Reading
  • Illustration Credits
  • Index
Review by New York Times Review

IN JUNE OF this year, the World Cup in Brazil will begin not with a flashy musical number or a team of flying acrobats but with a simple scientific demonstration. A paralyzed teenager will make the ceremonial first kick. This feat will be accomplished through an "exoskeleton" directly controlled by the teenager's thoughts and read through a helmet-mounted EEG machine. That kick, guided by an extraordinary brain-to-machine interface, may be our initiation into our post-human future. In that brave new world our memories will be recorded and swapped like old videotapes, self-aware robots will be our companions, and our consciousness, downloaded onto machines, will live forever. It's a future Michio Kaku, the string theorist turned popular scientist, believes is inevitable and closer than we think. In his previous book, "Physics of the Future," Kaku took readers on a whirlwind tour of science fictions he believes are poised to become science realities: space travel and nanotech medical robots. In "The Future of the Mind," Kaku ushers us to even stranger territory - the science of consciousness. Kaku claims the mysteries of the mind will soon be mysteries no more. It's an audacious assertion backed up, he says, by a flood of new neuroscience technologies. But behind his buoyant optimism lie questions that threaten the enterprise he describes so skillfully. What does a science of the mind, rather than the brain, look like? Does such a science require reducing the mind to "just neurons," or are there other paths to understanding the phenomena of consciousness? For Kaku, the brain is a computer made of meat, and understanding the mind is just a really, really hard engineering problem. The fundamental laws are already known, and Kaku tells us we'll soon be manipulating the stuff of consciousness with the same acuity we push electrons around in our digital devices. This singular confidence is both strength and weakness as Kaku unspools his narrative, and doubts about his core convictions begin to trail the reader like a parade of ghosts. Kaku takes us to laboratories where researchers are studying the microscopic dynamics of the brain's wiring. For example, using functional magnetic resonance imaging (fMRI), which tracks neural activity, researchers have recorded how the brain lights up when shown fragments of a video. Scientists can then determine a subject's neural response to seeing various things. Comparing this dictionary of neural responses to the observed fMRI patterns in a person viewing a different film, researchers can reconstruct a reasonable facsimile of the film based purely on brain activity. With this kind of technique it may even be possible for scientists to crudely identify what people hooked to fMRI machines are dreaming about. From these developments, Kaku imagines an era when memories can be recorded and then played back into someone else's head by stimulating the same pattern of neural activity. Going one step further, machines wired directly to brains will be able to read and transmit our thoughts instantaneously. Minds made of meat (ours) are just one of Kaku's concerns. He is also interested in the possibilities of silicon and even alien minds. A compelling chapter on artificial intelligence describes the explosion in robotics and the new research that seeks to broaden the requirements for silicon self-consciousness, including a capacity to feel emotion. Like the futurist Ray Kurzweil, Kaku believes the most important advances in silicon computing will still serve our needs and not the coming robot overlords (if we do create them). By mapping out the "connectome" - the explicit account of every neural connection in your head - Kaku tells us it should be possible to reverse-engineer each and every person's brain. Reconstruct this connectome in a computer and you will have downloaded yourself into that machine. In this way the future of the mind, your mind in particular, might last as long as there are computers to run your connectome. BUT ARE YOU nothing more than the sum of your brain's connections? Here's where Kaku stumbles. It's been almost 20 years since the philosopher David Chalmers introduced the distinction between "easy" and "hard" problems in the study of consciousness. Easy problems, according to Chalmers, were things like figuring out how the brain cycles through signals from the arm allowing you to pick up an object. Researchers developing the next generation of prosthetics will tell you this "easy" problem remains pretty hard, but as Chalmers rightly pointed out, control of the arm is nothing compared with developing a scientific account of the vividness of our own experience. It's the internal luminosity - the "being" of our being - that constitutes Chalmers's hard problem and that eludes Kaku's engineering-based perspective. The problem is that we still don't have much in the way of a working model of consciousness. With a physicist's eye for economy, Kaku tries to provide one through what he calls a "space-time theory." It's a model of consciousness with a graded scale of awareness based on the number of feedback loops between environment and organism. Thus, in Kaku's view, a thermostat has the lowest possible level of consciousness while humans, with our ability to move through space and project ourselves mentally backward and forward in time, represent the highest level currently known. I've spent most of my professional life running supercomputer simulations of events like the collapsing of interstellar gas clouds to form new stars, and it seems to me that Kaku has taken a metaphor and mistaken it for a mechanism. There has always been the temptation to take the latest technology, like clockworks in the 17th century, and see it as a model for the mechanics of thought. But simulations are not a self, and information is not experience. Kaku acknowledges the existence of the hard problem but waves it away. "There is no such thing as the Hard Problem," he writes. Thus the essential mystery of our lives - the strange sense of presence to which we're bound till death and that lies at the heart of so much poetry, art and music - is dismissed as a non-problem when it's exactly the problem we can't ignore. If we're to have anything like a final theory of consciousness, we had better be attentive to the complexity of how we experience our being. When Kaku quotes the cognitive scientist Marvin Minsky telling us that "minds are simply what brains do," he assumes that scientific accounts of consciousness must reduce to discussions of circuitry and programming alone. But there are other options. For those pursuing ideas of "emergence," descriptions of lower-level structures, like neurons, don't exhaust nature's creative potential. There's also the more radical possibility that some rudimentary form of consciousness must be added to the list of things the world is built of, like mass or electric charge. On the ethical front, Kaku does an admirable job of at least raising the troubling issues inherent in the technologies he describes, but there's one critical question he misses entirely. The deployment of new technologies tends to create their own realities and values. If we treat minds like meat-computers, we may end up in a world where that's the only aspect of their nature we perceive or value. Keeping these questions in mind, however, only enhances the enjoyment of this wide-ranging book. Kaku thinks with great breadth, and the vistas he presents us are worth the trip even if some of them turn out to be only dreamscapes. ADAM FRANK is an astrophysics professor at the University of Rochester and the author of "About Time: Cosmology and Culture at the Twilight of the Big Bang."

Copyright (c) The New York Times Company [March 9, 2014]
Review by Booklist Review

Facts to ponder: there are as many stars in our galaxy (about 100 billion) as there are neurons in your brain; your cell phone has more computing power than NASA had when it landed Apollo 11 on the moon. These seemingly unrelated facts tell us two things: our brains are magnificently complex organisms, and science fiction has a way of becoming reality rather quickly. This deeply fascinating book by theoretical physicist Kaku explores what might be in store for our minds: practical telepathy and telekinesis; artificial memories implanted into our brains; and a pill that will make us smarter. He describes work being done right now on using sensors to read images in the human brain and on downloading artificial memories into the brain to treat victims of strokes and Alzheimer's. SF fans might experience a sort of breathless thrill when reading the book This stuff is happening! It's really happening! and for general readers who have never really thought of the brain in all its glorious complexity and potential, the book could be a seriously mind-opening experience.--Pitt, David Copyright 2010 Booklist

From Booklist, Copyright (c) American Library Association. Used with permission.
Review by Publisher's Weekly Review

In this expansive, illuminating journey through the mind, theoretical physicist Kaku (Physics of the Future) explores fantastical realms of science fiction that may soon become our reality. His futurist framework merges physics with neuroscience to model how our brains construct the future, and is loosely applied to demonstrations that "show proof-of-principle" in accomplishing what was previously fictional: that minds can be read, memories can be digitally stored, and intelligences can be improved to great extents. The discussion, while heavily scientific, is engaging, clear, and replete with cinematic references. Kaku's claims, however, often lack generalizability: his points about human thought are derived from research studies and patterns that emerge from discrete areas of analysis under highly sophisticated technological surveillance. The place of these esoteric conclusions in the nuanced processes of our daily life is rarely explained. Likewise, each issue raised, while fascinating, is equally fleeting: topics skip from telepathy helmets to cell phone MRIs in just over a page. Legal and ethical complications, too, arise with each predicted advance, though aren't given the attention they demand. These new mental frontiers make for captivating reading, yet Kaku's optimism and enthusiasm provides cover for what are mostly overhyped claims. Agent: Stuart Krichevsky. (Feb.) (c) Copyright PWxyz, LLC. All rights reserved.

(c) Copyright PWxyz, LLC. All rights reserved
Review by Library Journal Review

Kaku (physics, City Univ. of New York; Physics of the Future) here turns his attention to cognitive science. He believes that brain function is just a matter of physics. By using newly developed technologies in brain research, scientists will help the paralyzed to walk via their own mental signaling (telekinesis), allow the detection of the mental construction of lies or other thought patterns (telepathy), and otherwise expand human brain abilities to sf levels. This is a charming, well-written, and engaging book. Unfortunately, while many of the author's statements are well supported by research data, some are contradicted by recent study results and a few seem to come out of nowhere. Still, an excellent starting point for anyone interested in the subject. Narrator Feodor Chin's beautiful voice is a pleasure to hear. VERDICT Recommended for listeners curious about popular science or psychology.-I. Pour-El, Des Moines Area Community Coll., Ames, IA (c) Copyright 2014. Library Journals LLC, a wholly owned subsidiary of Media Source, Inc. No redistribution permitted.

(c) Copyright Library Journals LLC, a wholly owned subsidiary of Media Source, Inc. No redistribution permitted.
Review by Kirkus Book Review

Having written the enthusiastic but strictly science-based Physics of the Impossible (2008) and Physics of the Future (2011), Kaku (Theoretical Physics/City Univ. of New York) turns his attention to the human mind with equally satisfying results. Aware that predictions limited to a lifetime are usually wrong--where are the flying cars, cancer cures and Mars colonies foretold in the 1950s?--the author expands his forecasts to the next few centuries. He has no trouble foreseeing telepathy, telekinesis, intelligence pills, artificial memories and mind control. He agrees that centuries of research by physicians and neuroscientists has borne fruit, but he boasts that the end of the 20th century saw his own profession, physics, produce spectacular advances, with more to come. Acronymic high-tech machines (fMRI, PET, ECOG, DTI) allow researchers to watch the brain reason, see, remember and deliver instructions. Telepathy is no longer a fantasy since scanners can already detect, if crudely, what a subject is thinking, and genetics and biochemistry now allow researchers to alter memories and increase intelligence in animals. Direct electrical stimulation of distinct brain regions has changed behavior, awakened comatose patients, relieved depression, and produced out-of-body and religious experiences. Similar to the human genome program, massive research efforts in the United States and Europe to reverse-engineer the brain have the potential to vastly increase human potential as well as relieve disease and injury. "[W]e should treasure the consciousness that is found on the Earth," writes the author. "It is the highest form of complexity known in the universe, and probably the rarest." Kaku is not shy about quoting science-fiction movies and TV (he has seen them all). Despite going off the deep end musing about phenomena such as isolated consciousness spreading throughout the universe, he delivers ingenious predictions extrapolated from good research already in progress.]] Copyright Kirkus Reviews, used with permission.

Copyright (c) Kirkus Reviews, used with permission.

Houdini believed that telepathy was impossible. But science is proving Houdini wrong. Telepathy is now the subject of intense research at universities around the world, where scientists have already been able to use advanced sensors to read individual words, images, and thoughts in a person's brain. This could alter the way we communicate with stroke and accident victims who are "locked in" their bodies, unable to articulate their thoughts except through blinks. But that's just the start. Telepathy might also radically change the way we interact with computers and the outside world. Indeed, in a recent "Next 5 in 5 Forecast," which predicts five revolutionary developments in the next five years, IBM scientists claimed that we will be able to mentally communicate with computers, perhaps replacing the mouse and voice commands. This means using the power of the mind to call people on the phone, pay credit card bills, drive cars, make appointments, create beautiful symphonies and works of art, etc. The possibilities are endless, and it seems that everyone-- from computer giants, educators, video game companies, and music studios to the Pentagon-- is converging on this technology. True telepathy, found in science-fiction and fantasy novels, is not possible without outside assistance. As we know, the brain is electrical. In general, anytime an electron is accelerated, it gives off electromagnetic radiation. The same holds true for electrons oscillating inside the brain, which broadcasts radio waves. But these signals are too faint to be detected by others, and even if we could perceive these radio waves, it would be difficult to make sense of them. Evolution has not given us the ability to decipher this collection of random radio signals, but computers can. Scientists have been able to get crude approximations of a person's thoughts using EEG scans. Subjects would put on a helmet with EEG sensors and concentrate on certain pictures-- say, the image of a car. The EEG signals were then recorded for each image and eventually a rudimentary dictionary of thought was created, with a one- to- one correspondence between a person's thoughts and the EEG image. Then, when a person was shown a picture of another car, the computer would recognize the EEG pattern as being from a car. The advantage of EEG sensors is that they are noninvasive and quick. You simply put a helmet containing many electrodes onto the surface of the brain and the EEG can rapidly identify signals that change every millisecond. But the problem with EEG sensors, as we have seen, is that electromagnetic waves deteriorate as they pass through the skull, and it is difficult to locate their precise source. This method can tell if you are thinking of a car or a house, but it cannot re- create an image of the car. That is where Dr. Jack Gallant's work comes in. VIDEOS OF THE MIND The epicenter for much of this research is the University of California at Berkeley, where I received my own Ph.D. in theoretical physics years ago. I had the pleasure of touring the laboratory of Dr. Gallant, whose group has accomplished a feat once considered to be impossible: videotaping people's thoughts. "This is a major leap forward reconstructing internal imagery. We are opening a window into the movies in our mind," says Gallant. When I visited his laboratory, the first thing I noticed was the team of young, eager postdoctoral and graduate students huddled in front of their computer screens, looking intently at video images that were reconstructed from someone's brain scan. Talking to Gallant's team, you feel as though you are witnessing scientific history in the making. Gallant explained to me that first the subject lies flat on a stretcher, which is slowly inserted headfirst into a huge, state- of- the- art MRI machine, costing upward of $3 million. The subject is then shown several movie clips (such as movie trailers readily available on YouTube). To accumulate enough data, the subject has to sit motionless for hours watching these clips, a truly arduous task. I asked one of the postdocs, Dr. Shinji Nishimoto, how they found volunteers who were willing to lie still for hours on end with only fragments of video footage to occupy the time. He said the people in the room, the grad students and postdocs, volunteered to be guinea pigs for their own research. As the subject watches the movies, the MRI machine creates a 3- D image of the blood flow within the brain. The MRI image looks like a vast collection of thirty thousand dots, or voxels. Each voxel represents a pinpoint of neural energy, and the color of the dot corresponds to the intensity of the signal and blood flow. Red dots represent points of large neural activity, while blue dots represent points of less activity. (The final image looks very much like thousands of Christmas lights in the shape of the brain. Immediately you can see that the brain is concentrating most of its mental energy in the visual cortex, which is located at the back of the brain, while watching these videos.) Gallant's MRI machine is so powerful it can identify two to three hundred distinct regions of the brain and, on average, can take snapshots that have one hundred dots per region of the brain. (One goal for future generations of MRI technology is to provide an even sharper resolution by increasing the number of dots per region of the brain.) At first, this 3- D collection of colored dots looks like gibberish. But after years of research, Dr. Gallant and his colleagues have developed a mathematical formula that begins to find relationships between certain features of a picture (edges, textures, intensity, etc.) and the MRI voxels. For example, if you look at a boundary, you'll notice it's a region separating lighter and darker areas, and hence the edge generates a certain pattern of voxels. By having subject after subject view such a large library of movie clips, this mathematical formula is refined, allowing the computer to analyze how all sorts of images are converted into MRI voxels. Eventually the scientists were able to ascertain a direct correlation between certain MRI patterns of voxels and features within each picture. At this point, the subject is then shown another movie trailer. The computer analyzes the voxels generated during this viewing and re- creates a rough approximation of the original image. (The computer selects images from one hundred movie clips that most closely resemble the one that the subject just saw and then merges images to create a close approximation.) In this way, the computer is able to create a fuzzy video of the visual imagery going through your mind. Dr. Gallant's mathematical formula is so versatile that it can take a collection of MRI voxels and convert it into a picture, or it can do the reverse, taking a picture and then converting it to MRI voxels. I had a chance to view the video created by Dr. Gallant's group, and it was very impressive. Watching it was like viewing a movie with faces, animals, street scenes, and buildings through dark glasses. Although you could not see the details within each face or animal, you could clearly identify the kind of object you were seeing. Not only can this program decode what you are looking at, it can also decode imaginary images circulating in your head. Let's say you are asked to think of the Mona Lisa. We know from MRI scans that even though you're not viewing the painting with your eyes, the visual cortex of your brain will light up. Dr. Gallant's program then scans your brain while you are thinking of the Mona Lisa and flips through its data files of pictures, trying to find the closest match. In one experiment I saw, the computer selected a picture of the actress Salma Hayek as the closest approximation to the Mona Lisa. Of course, the average person can easily recognize hundreds of faces, but the fact that the computer analyzed an image within a person's brain and then picked out this picture from millions of random pictures at its disposal is still impressive. The goal of this whole process is to create an accurate dictionary that allows you to rapidly match an object in the real world with the MRI pattern in your brain. In general, a detailed match is very difficult and will take years, but some categories are actually easy to read just by flipping through some photographs. Dr. Stanislas Dehaene of the Collège de France in Paris was examining MRI scans of the parietal lobe, where numbers are recognized, when one of his postdocs casually mentioned that just by quickly scanning the MRI pattern, he could tell what number the subject was looking at. In fact, certain numbers created distinctive patterns on the MRI scan. He notes, "If you take 200 voxels in this area, and look at which of them are active and which are inactive, you can construct a machine-learning device that decodes which number is being held in memory." This leaves open the question of when we might be able to have picture quality videos of our thoughts. Unfortunately, information is lost when a person is visualizing an image. Brain scans corroborate this. When you compare the MRI scan of the brain as it is looking at a flower to an MRI scan as the brain is thinking about a flower, you immediately see that the second image has far fewer dots than the first. So although this technology will vastly improve in the coming years, it will never be perfect. (I once read a short story in which a man meets a genie who offers to create anything that the person can imagine. The man immediately asks for a luxury car, a jet plane, and a million dollars. At first, the man is ecstatic. But when he looks at these items in detail, he sees that the car and the plane have no engines, and the image on the cash is all blurred. Everything is useless. This is because our memories are only approximations of the real thing.) But given the rapidity with which scientists are beginning to decode the MRI patterns in the brain, will we soon be able to actually read words and thoughts circulating in the mind? READING THE MIND In fact, in a building next to Gallant's laboratory, Dr. Brian Pasley and his colleagues are literally reading thoughts-- at least in principle. One of the postdocs there, Dr. Sara Szczepanski, explained to me how they are able to identify words inside the mind. The scientists used what is called ECOG (electrocorticogram) technology, which is a vast improvement over the jumble of signals that EEG scans produce. ECOG scans are unprecedented in accuracy and resolution, since signals are directly recorded from the brain and do not pass through the skull. The flipside is that one has to remove a portion of the skull to place a mesh, containing sixty-four electrodes in an eight-by-eight grid, directly on top of the exposed brain. Luckily they were able to get permission to conduct experiments with ECOG scans on epileptic patients, who were suffering from debilitating seizures. The ECOG mesh was placed on the patients' brains while open- brain surgery was being performed by doctors at the nearby University of California at San Francisco. As the patients hear various words, signals from their brains pass through the electrodes and are then recorded. Eventually a dictionary is formed, matching the word with the signals emanating from the electrodes in the brain. Later, when a word is uttered, one can see the same electrical pattern. This correspondence also means that if one is thinking of a certain word, the computer can pick up the characteristic signals and identify it. With this technology, it might be possible to have a conversation that takes place entirely telepathically. Also, stroke victims who are totally paralyzed may be able to "talk" through a voice synthesizer that recognizes the brain patterns of individual words. Not surprisingly, BMI (brain- machine interface) has become a hot field, with groups around the country making significant breakthroughs. Similar results were obtained by scientists at the University of Utah in 2011. They placed grids, each containing sixteen electrodes, over the facial motor cortex (which controls movements of the mouth, lips, tongue, and face) and Wernicke's area, which processes information about language. The person was then asked to say ten common words, such as "yes" and "no," "hot" and "cold," "hungry" and "thirsty," "hello" and "good- bye," and "more" and "less." Using a computer to record the brain signals when these words were uttered, the scientists were able to create a rough one- to- one correspondence between spoken words and computer signals from the brain. Later, when the patient voiced certain words, they were able to correctly identify each one with an accuracy ranging from 76 percent to 90 percent. The next step is to use grids with 121 electrodes to get better resolution. In the future, this procedure may prove useful for individuals suffering from strokes or paralyzing illnesses such as Lou Gehrig's disease, who would be able to speak using the brain- to- computer technique. TYPING WITH THE MIND At the Mayo Clinic in Minnesota, Dr. Jerry Shih has hooked up epileptic patients via ECOG sensors so they can learn how to type with the mind. The calibration of this device is simple. The patient is first shown a series of letters and is told to focus mentally on each symbol. A computer records the signals emanating from the brain as it scans each letter. As with the other experiments, once this one- to- one dictionary is created, it is then a simple matter for the person to merely think of the letter and for the letter to be typed on a screen, using only the power of the mind. Dr. Shih, the leader of this project, says that the accuracy of his machine is nearly 100 percent. Dr. Shih believes that he can next create a machine to record images, not just words, that patients conceive in their minds. This could have applications for artists and architects, but the big drawback of ECOG technology, as we have mentioned, is that it requires opening up patients' brains. Meanwhile, EEG typewriters, because they are noninvasive, are entering the marketplace. They are not as accurate or precise as ECOG typewriters, but they have the advantage that they can be sold over the counter. Guger Technologies, based in Austria, recently demonstrated an EEG typewriter at a trade show. According to their officials, it takes only ten minutes or so for people to learn how to use this machine, and they can then type at the rate of five to ten words per minute. Excerpted from The Future of the Mind: The Scientific Quest to Understand, Enhance, and Empower the Mind by Michio Kaku All rights reserved by the original copyright owners. Excerpts are provided for display purposes only and may not be reproduced, reprinted or distributed without the written permission of the publisher.