512.5/Lipschutz
1 / 1 copies available
Location |
Call Number |
|
Status |
2nd Floor
|
512.5/Lipschutz |
|
Checked In
|
- Subjects
- Published
-
New York ; London :
McGraw-Hill
c2013.
- Language
- English
- Main Author
-
Seymour Lipschutz
(-)
- Other Authors
-
Marc Lipson
(-)
- Edition
- 5th ed
- Item Description
- Previous ed.: 2011.
Includes index.
- Physical Description
- vi, 426 p. : ill. ; 28 cm
- ISBN
- 9780071794565
- List of Symbols
- Chapter 1. Vectors in R n and C n , Spatial Vectors
- 1.1. Introduction
- 1.2. Vectors in R n
- 1.3. Vector Addition and Scalar Multiplication
- 1.4. Dot (Inner) Product
- 1.5. Located Vectors, Hyperplanes, Lines, Curves in R n
- 1.6. Vectors in R 3 (Spatial Vectors), ijk Notation
- 1.7. Complex Numbers
- 1.8. Vectors in C n
- Chapter 2. Algebra of Matrices
- 2.1. Introduction
- 2.2. Matrices
- 2.3. Matrix Addition and Scalar Multiplication
- 2.4. Summation Symbol
- 2.5. Matrix Multiplication
- 2.6. Transpose of a Matrix
- 2.7. Square Matrices
- 2.8. Powers of Matrices, Polynomials in Matrices
- 2.9. Invertible (Nonsingular) Matrices
- 2.10. Special Types of Square Matrices
- 2.11. Complex Matrices
- 2.12. Block Matrices
- Chapter 3. Systems of Linear Equations
- 3.1. Introduction
- 3.2. Basic Definitions, Solutions
- 3.3. Equivalent Systems, Elementary Operations
- 3.4. Small Square Systems of Linear Equations
- 3.5. Systems in Triangular and Echelon Forms
- 3.6. Gaussian Elimination
- 3.7. Echelon Matrices, Row Canonical Form, Row Equivalence
- 3.8. Gaussian Elimination, Matrix Formulation
- 3.9. Matrix Equation of a System of Linear Equations
- 3.10. Systems of Linear Equations and Linear Combinations of Vectors
- 3.11. Homogeneous Systems of Linear Equations
- 3.12. Elementary Matrices
- 3.13. LU Decomposition
- Chapter 4. Vector Spaces
- 4.1. Introduction
- 4.2. Vector Spaces
- 4.3. Examples of Vector Spaces
- 4.4. Linear Combinations, Spanning Sets
- 4.5. Subspaces
- 4.6. Linear Spans, Row Space of a Matrix
- 4.7. Linear Dependence and Independence
- 4.8. Basis and Dimension
- 4.9. Application to Matrices, Rank of a Matrix
- 4.10. Sums and Direct Sums
- 4.11. Coordinates
- Chapter 5. Linear Mappings
- 5.1. Introduction
- 5.2. Mappings, Functions
- 5.3. Linear Mappings (Linear Transformations)
- 5.4. Kernel and Image of a Linear Mapping
- 5.5. Singular and Nonsingular Linear Mappings, Isomorphisms
- 5.6. Operations with Linear Mappings
- 5.7. Algebra A(V) of Linear Operators
- Chapter 6. Linear Mappings and Matrices
- 6.1. Introduction
- 6.2. Matrix Representation of a Linear Operator
- 6.3. Change of Basis
- 6.4. Similarity
- 6.5. Matrices, and General Linear Mappings
- Chapter 7. Inner Product Spaces, Orthogonality
- 7.1. Introduction
- 7.2. Inner Product Spaces
- 7.3. Examples of Inner Product Spaces
- 7.4. Cauchy-Schwarz Inequality, Applications
- 7.5. Orthogonality
- 7.6. Orthogonal Sets and Bases
- 7.7. Gram-Schmidt Orthogonalization Process
- 7.8. Orthogonal and Positive Definite Matrices
- 7.9. Complex Inner Product Spaces
- 7.10. Normed Vector Spaces (Optional)
- Chapter 8. Determinants
- 8.1. Introduction
- 8.2. Determinants of Orders 1 and 2
- 8.3. Determinants of Order 3
- 8.4. Permutations
- 8.5. Determinants of Arbitrary Order
- 8.6. Properties of Determinants
- 8.7. Minors and Cofactors
- 8.8. Evaluation of Determinants
- 8.9. Classical Adjoint
- 8.10. Applications to Linear Equations, Cramer's Rule
- 8.11. Submatrices, Minors, Principal Minors
- 8.12. Block Matrices and Determinants
- 8.13. Determinants and Volume
- 8.14. Determinant of a Linear Operator
- 8.15. Multilinearity and Determinants
- Chapter 9. Diagonalization: Eigenvalues and Eigenvectors
- 9.1. Introduction
- 9.2. Polynomials of Matrices
- 9.3. Characteristic Polynomial, Cayley-Hamilton Theorem
- 9.4. Diagonalization, Eigenvalues and Eigenvectors
- 9.5. Computing Eigenvalues and Eigenvectors, Diagonalizing Matrices
- 9.6. Diagonalizing Real Symmetric Matrices and Quadratic Forms
- 9.7. Minimal Polynomial
- 9.8. Characteristic and Minimal Polynomials of Block Matrices
- Chapter 10. Canonical Forms
- 10.1. Introduction
- 10.2. Triangular Form
- 10.3. Invariance
- 10.4. Invariant Direct-Sum Decompositions
- 10.5. Primary Decomposition
- 10.6. Nilpotent Operators
- 10.7. Jordan Canonical Form
- 10.8. Cyclic Subspaces
- 10.9. Rational Canonical Form
- 10.10. Quotient Spaces
- Chapter 11. Linear Functionals and the Dual Space
- 11.1. Introduction
- 11.2. Linear Functionals and the Dual Space
- 11.3. Dual Basis
- 11.4. Second Dual Space
- 11.5. Annihilators
- 11.6. Transpose of a Linear Mapping
- Chapter 12. Bilinear, Quadratic, and Hermitian Forms
- 12.1. Introduction
- 12.2. Bilinear Forms
- 12.3. Bilinear Forms and Matrices
- 12.4. Alternating Bilinear Forms
- 12.5. Symmetric Bilinear Forms, Quadratic Forms
- 12.6. Real Symmetric Bilinear Forms, Law of Inertia
- 12.7. Hermitian Forms
- Chapter 13. Linear Operators on Inner Product Spaces
- 13.1. Introduction
- 13.2. Adjoint Operators
- 13.3. Analogy Between A(V) and C, Special Linear Operators
- 13.4. Self-Adjoint Operators
- 13.5. Orthogonal and Unitary Operators
- 13.6. Orthogonal and Unitary Matrices
- 13.7. Change of Orthonormal Basis
- 13.8. Positive Definite and Positive Operators
- 13.9. Diagonalization and Canonical Forms in Inner Product Spaces
- 13.10. Spectral Theorem
- Appendix A. Multilinear Products
- Appendix B. Algebraic Structures
- Appendix C. Polynomials over a Field
- Appendix D. Odds and Ends
- Index