Introduction to modern optics

Grant R. Fowles

Book - 1989

Saved in:

2nd Floor Show me where

535.2/Fowles
1 / 1 copies available
Location Call Number   Status
2nd Floor 535.2/Fowles Checked In
Subjects
Published
New York : Dover 1989, c1975.
Language
English
Main Author
Grant R. Fowles (-)
Edition
2nd ed., Dover ed
Item Description
"This Dover edition, first published in 1989, is an unabridged, corrected republication of the second edition (1975) of the work originally published by Holt, Rinehart, and Winston, Inc., New York, 1968"--T.p. verso.
Physical Description
viii, 328 p. : ill. ; 22 cm
Bibliography
Includes bibliographical references and index.
ISBN
9780486659572
  • Preface
  • Chapter 1. The Propagation of Light
  • 1.1. Elementary Optical Phenomena and the Nature of Light
  • 1.2. Electrical Consants and the Speed of Light
  • 1.3. Plane Harmonic Waves
  • Phase Velocity
  • 1.4. Alternative Ways of Representing Harmonic Waves
  • 1.5. Group Velocity
  • 1.6. The Doppler Effect
  • Chapter 2. The Vectorial Nature of Light
  • 2.1. General Remarks
  • 2.2. Energy Flow
  • The Poynting Vector
  • 2.3. Linear Polarization
  • 2.4. Circular and Elliptic Polarization
  • 2.5. Matrix Representation of Polarization
  • The Jones Calculus
  • 2.6. Reflection and Refraction at a Plane Boundary
  • 2.7. Amplitudes of Reflected and Refracted Waves
  • Fresnel's Equations
  • 2.8. The Brewster Angle
  • 2.9. The Evanescent Wave in Total Reflection
  • 2.10. Phase Changes in Total Internal Reflection
  • 2.11. Reflection Matrix
  • Chapter 3. Coherence and Interference
  • 3.1. The Principle of Linear Superposition
  • 3.2. Young's Experiment
  • 3.3. The Michelson Interferometer
  • 3.4. Theory of Partial Coherence
  • Visibility of Fringes
  • 3.5. Coherence Time and Coherence Length
  • 3.6. Spectral Resolution of a Finite Wave Train
  • Coherence and Line Width
  • 3.7. Spatial Coherence
  • 3.8. Intensity Interferometry
  • 3.9. Fourier Transform Spectroscopy
  • Chapter 4. Multiple-Beam Interference
  • 4.1. Interference with Multiple Beams
  • 4.2. The Fabry-Perot Interferometer
  • 4.3. Resolution of Fabry-Perot Instruments
  • 4.4. Theory of Multilayer Films
  • Chapter 5. Diffraction
  • 5.1. General Description of Diffraction
  • 5.2. Fundamental Theory
  • 5.3. Fraunhofer and Fresnel Diffraction
  • 5.4. Fraunhofer Diffraction Patterns
  • 5.5. Fresnel Diffraction Patterns
  • 5.6. Applications of the Fourier Transform to Diffraction
  • 5.7. Reconstruction of the Wave Front by Diffraction
  • Holography
  • Chapter 6. Optics of Solids
  • 6.1. General Remarks
  • 6.2. Macroscopic Fields and Maxwell's Equations
  • 6.3. The General Wave Equation
  • 6.4. Propagation of Light in Isotropic Dielectrics
  • Dispersion
  • 6.5. Propagation of Light in Conducting Media
  • 6.6. Reflection and Refraction at the Boundary of an Absorbing Medium
  • 6.7. Propagation of Light in Crystals
  • 6.8. Double Refraction at a Boundary
  • 6.9. Optical Activity
  • 6.10. Faraday Rotation in Solids
  • 6.11. Other Magneto-optic and Electro-optic Effects
  • 6.12. Nonlinear Optics
  • Chapter 7. Thermal Radiation and Light Quanta
  • 7.1. Thermal Radiation
  • 7.2. Kirchoff's Law
  • Blackbody Radiation
  • 7.3. Modes of Electromagnetic Radiation in a Cavity
  • 7.4. Classical Theory of Blackbody Radiation
  • The Rayleigh-Jeans Formula
  • 7.5. Quantization of Cavity Radiation
  • 7.6. Photon Statistics
  • Planck's Formula
  • 7.7. The Photoelectric Effect and the Detection of Individual Photons
  • 7.8. Momentum of a Photon
  • Light Pressure
  • 7.9. Angular Momentum of a Photon
  • 7.10. Wavelength of a Material Particle
  • de Broglie's Hypothesis
  • 7.11. Heisenberg's Uncertainty Principle
  • Chapter 8. Optical Spectra
  • 8.1. General Remarks
  • 8.2. Elementary Theory of Atomic Spectra
  • 8.3. Quantum Mechanics
  • 8.4. The Schrödinger Equation
  • 8.5. Quantum Mechanics of the Hydrogen Atom
  • 8.6. Radiative Transitions and Selection Rules
  • 8.7. Fine Structure of Specturm Lines
  • Electron Spin
  • 8.8. Multiplicity in the Spectra of Many-Electron Atoms
  • Spectroscopic Notation
  • 8.9. Molecular Spectra
  • 8.10. Atomic-Energy Levels in Solids
  • Chapter 9. Amplification of Light
  • Lasers
  • 9.1. Introduction
  • 9.2. Stimulated Emission and Thermal Radiation
  • 9.3. Amplification in a Medium
  • 9.4. Methods of Producing a Population Inversion
  • 9.5. Laser Oscillation
  • 9.6. Optical-Resonaor Theory
  • 9.7. Gas Lasers
  • 9.8. Optically Pumped Solid-State Lasers
  • 9.9. Dye Lasers
  • 9.10. Semiconductor Diode Lasers
  • 9.11. Q-Switching and Mode Locking
  • 9.12. The Ring Laser
  • Chapter 10. Ray Optics
  • 10.1. Reflection and Refraction at a Spherical Surface
  • 10.2. Lenses
  • 10.3. Ray Eqauations
  • 10.4. Ray Matrices and Ray Vectors
  • 10.5. Periodic Lens Waveguides and Opical Resonators
  • Appendix I. Relativistic Optics
  • 1.1. The Michelson-Morley Experiment
  • 1.2. Eindtein's Postulates of Special Relativity
  • 1.3. Relativistic Effects in Optics
  • 1.4. The Experiments of Sagnac and of Michelson and Gale to Detect Rotation
  • References
  • Answers to Selected Odd-Numbered Problems
  • Index